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We study quantum phase transitions from easy-plane antiferromagnetic metals to paramagnetic metals in
Kondo-Heisenberg lattice systems. If the paramagnetic metal is a fractionalized Fermi liquid then the universal
critical properties of the phase transition are unaffected for a weak Kondo coupling even when the Fermi
surface intersects the magnetic zone boundary. This is in striking contrast to the conventional theory of phase
transitions between paramagnetic and antiferromagnetic metals where any Kondo coupling is strongly relevant,
and leads to a Landau-damped “Hertz-Millis” theory. The electron quasiparticle remains well defined in the
quantum critical regime and the critical spin fluctuations only contribute subleading corrections to the various
properties of conduction electrons.
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I. INTRODUCTION

The earliest and the most influential approach to study
magnetic quantum phase transitions in metals �developed by
Hertz, Moriya, Millis1 and others �for additional references
see, e.g., Ref. 2�� focuses on the fluctuations of the natural
magnetic order parameter. The metallic environment results
in damping of these magnetic fluctuations. The resulting
theory is however weakly coupled in physical dimension d
�2—consequently it allows only for weak deviations from
Fermi-liquid physics even right at the magnetic quantum
critical point. In particular, the spin-fluctuation spectrum at
finite temperature T and a frequency � does not show scaling
as a function of � /T.

Experimentally the best-studied magnetic quantum phase
transitions are in heavy-fermion metals2 which have a lattice
of local moments coupled via Kondo exchange to a partially
filled band of conduction electrons. Remarkably in many
cases, striking breakdown of Fermi-liquid physics is ob-
served near these quantum critical points which are not un-
derstood even qualitatively. For instance, the spin-fluctuation
spectrum in CeCu6−xAux at quantum criticality is scale in-
variant and shows � /T scaling.3–5 A number of transport and
thermodynamic anomalies have also been seen in this and
other materials.6–8 In the heavy-fermion context, the Hertz-
Moriya-Millis �HMM� approach treats the magnetism as a
spin-density wave instability of the heavy Fermi liquid and
essentially assumes that the Kondo process responsible for
the formation of the Fermi-liquid state continues across the
magnetic transition. An alternate approach specific to heavy
electron metals suggests that the transition to magnetism is
accompanied by the breakdown of the Kondo effect.9–12 Em-
pirically this will manifest itself as a reconstruction of the
electronic Fermi surface associated with the loss of partici-
pation of the local moments in the Fermi sea. Evidence in
favor of such a Fermi-surface reconstruction accompanying
the magnetic ordering transition has been presented in
YbRh2Si2 �Ref. 13� and in CeRhIn5.14 Very recently studies
of YbRh2Si2 with Co or Ir substituted at the Rh site have
suggested that the Fermi-surface reconstruction may be sepa-
rated from the magnetic transition through chemical
pressure.15 Most interestingly with Ir substitution, the anti-

ferromagnetic �AFM� metal appears to be separated from the
paramagnetic large Fermi-surface metal through an interme-
diate phase which has neither magnetism nor Kondo screen-
ing. The nature of this intermediate phase and the associated
quantum phase transitions remains to be elucidated.

On the theoretical side, much attention has focused on the
possible quantum phases and phase transitions of Kondo lat-
tices driven by competition between intermoment exchange
and the Kondo effect. Two common phases are of course a
magnetically ordered metal with a “small” conduction-
electron Fermi surface, and a paramagnetic heavy Fermi liq-
uid with a “large” Fermi surface. An intriguing third possi-
bility is that the local moments form a quantum spin-liquid
state which then remains decoupled from the conduction
electrons.11,12,16 The resulting paramagnetic metal will have a
small Fermi surface and hence violate the usual Luttinger
theorem.11 Such phases were dubbed “fractionalized Fermi
liquids” and denoted FL�. Quantum phase transitions in
Kondo lattice systems are much less understood. The possi-
bility of a single direct transition where the magnetic order-
ing is accompanied by the destruction of the Kondo effect
�and the associated Fermi-surface reconstruction� has been
discussed but without satisfactory resolution. Progress has
been possible in analyzing phase transitions associated with
the breakdown of the Kondo effect without worrying about
the magnetic ordering. A concrete theory of such a “Kondo
breakdown” transition from the usual heavy Fermi liquid to a
“small Fermi surface” metal was proposed in Ref. 17 and
further developed in Ref. 18.

In this paper, we explore instead the complementary prob-
lem of the quantum phase transition associated with the de-
struction of magnetism without worrying about the onset of
Kondo screening. Specifically we study the phase transition
between a magnetic metal and a particular fractionalized
Fermi liquid where the local moments form a quantum spin
liquid. We focus on the interesting case where the magnetic
ordering wave vector can connect distinct points of the
conduction-electron Fermi surface. Remarkably we find that
the magnetic phase transition remains strongly coupled, and
satisfies nontrivial scaling �such as in the spin-fluctuation
spectrum as a function of � /T�. This is in striking contrast to
the usual HMM spin-density wave transition. We also study
the effects of these critical spin fluctuations on the properties
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of the electronic quasiparticles of the quantum critical metal.
Our considerations will be based on Kondo-Heisenberg

models with the general structure,

H = Hc + HK + Hint, �1�

Hc = �
k

�kck
†ck, �2�

HK =
JK

2 �
r

S�r · cr
†�� cr, �3�

Hint = �
rr�

JaSr
aSr�

a + ¯ . �4�

Here ck� destroys a conduction electron of momentum k and
spin � and S�r are spin-1/2 operators describing the localized
moments. In the last term, we will allow for other short-
ranged interactions between the local moments that enable
tuning the local-moment system through magnetic phase
transitions.

Generally the magnetic phase transitions of the kind we
wish to study are conveniently accessed theoretically by first
ignoring any coupling between conduction electrons and the
local moments. Then the local-moment system is insulating
and much is known about the phases and phase transitions of
such quantum magnets. The general question we are con-
cerned with is the effect of a small coupling of this insulating
quantum magnet to the metallic electrons. The best under-
stood example of such a quantum phase transition in an in-
sulating magnet is that between a Neel state and a gapped
quantum spin liquid. In the simplest such spin-liquid state,
the excitations consist of spin-1/2 bosonic spinons. In addi-
tion, there are gapped Z2 vortices �visons� that act as sources
of � flux for the spinons. Second-order quantum phase tran-
sitions to such states from magnetically ordered states are
known to be possible in two cases—first for magnets with
noncollinear magnetization patterns and second for magnets
with easy-plane anisotropy with either collinear or noncol-
linear magnetic order. For concreteness, we will focus on
easy-plane quantum antiferromagnets with collinear order in
this paper.

In the presence of weak coupling to the metallic electrons
Ref. 11 argued that the quantum spin-liquid state and its
topological order are stable. The result is a “fractionalized
Fermi liquid” phase which has a c-electron Fermi surface
coexisting with gapped fractionalized spinon excitations. The
transition to the Neel state has not been previously described
and will be studied in this paper. We first argue that a weak
coupling to the c electrons actually stabilizes the Neel state
relative to the spin-liquid state. Thus the phase boundary
curves as shown in Fig. 1.

In the ordered state, the c electrons near the points con-
nected by the ordering wave vector will be strongly affected
and the Fermi surface will change shape compared to the
paramagnet. However, we will argue that right at the mag-
netic quantum critical point, the damping of the spin fluctua-
tions due to the metallic quasiparticles is irrelevant. Thus,
the c electrons dynamically decouple from the critical spin

fluctuations even though they are strongly coupled in the
ordered state. This therefore provides an example of a
strongly coupled magnetic quantum critical point in a metal-
lic environment. We study the effect of the critical spin fluc-
tuations on the c electrons. Near “hot spots” on the Fermi
surface �points that are connected to each other by the order-
ing wave vector�, there is anomalous scattering leading to
electron lifetimes that vanish as T	̄ with 	̄
1. Thus the qua-
siparticle picture of the c excitations is preserved at this
quantum critical point. We describe the corrections to Fermi-
liquid results in transport and other quantities that result from
the anomalous scattering at these hot spots.

II. NEEL ORDER—QUANTUM SPIN-LIQUID PHASE
TRANSITION IN EASY-PLANE ANTIFERROMAGNETS

Consider easy-plane antiferromagnets with spin-1/2 per
unit cell with collinear order at a wave vector Q� on square
lattice. The spin ordering pattern is characterized in terms of
an XY order parameter �,

S−�ri� � eiQ·ri� . �5�

The XY ordering allows for vortex topological defects char-
acterized by an integer winding number that are pointlike in
two space dimensions. Now consider disordering the XY or-
der to move into a quantum paramagnet by proliferating
these vortices. When single vortices �i.e., those with 2�
winding� proliferate, the result is a quantum paramagnet with
broken translational symmetry �a valence-bond solid�. Quan-
tum spin-liquid states result if the XY order is killed by pro-
liferating paired vortices �i.e., those with 4� winding�. The
resulting spin-liquid state is described as a gapped topologi-
cally ordered Z2 spin liquid with bosonic spin-1/2 spinons,
and a gapped Z2 vortex �vison� that may be understood as an
unpaired vortex. A lattice model exhibiting this physics was
constructed in reference.19

As shown in Ref. 19, the quantum phase transition be-
tween this spin liquid and the ordered state may be under-
stood as a condensation of the bosonic spinons. In terms of
the spinon fields �denoted as b†�, it is in the universality class
of the 2+1 dimensional classical XY model. However, the
physical spin order parameter is obtained as a square of the
spinon field,

FIG. 1. Phase diagram in the presence of Kondo coupling. As
shown in the text, weak Kondo coupling stabilizes the ordered Neel
phase relative to the spin liquid.
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� = b2. �6�

Consequently, the order-parameter correlations decay with a
large anomalous exponent,

����k,����k,��� �
1

�k2 − �� + i��2�1−	̄/2 �7�

with 	̄=1.45 �see, for example, Ref. 20�. We would refer to
this phase transition as lying in the XY� universality class in
this paper since it is distinct from the usual XY phase transi-
tion where the physical �planar� spin could be identified with
the order parameter.

III. COUPLING TO METALLIC ELECTRONS

A. Weak-coupling phase diagram

Now consider turning on a weak but nonzero interaction
of the form in Eq. �3� between the insulating easy-plane
magnet described above and a sea of noninteracting conduc-
tion electrons. We will focus on the effect of this interaction
on the slow hydrodynamic variables of the insulating quan-
tum magnet. These are simply the antiferromagnetic order
parameter �, the conserved uniform spin density L� , and the
conserved energy density �. The order-parameter coupling is
the most important and takes the form

S = 	
q,k1,k2,�

JK�
+�q� · ck1

† �−ck2
�q + k1 − k2 − Q� + c.c.,

�8�

where Q is the ordering wave vector. We will assume that Q
can connect two distinct points on the conduction-electron
Fermi surface �Fig. 2�. The electrons near such Fermi-surface
points scatter strongly off the fluctuations of the magnetic
order parameter. In the ordered phase, this will open up a gap
at such points of the conduction-electron Fermi surface. The
size of the gap �el will be determined by the strength of
order parameter �0= 
�
. Within mean-field theory, �el
�JK�0. In the terminology of Ref. 17, this is a “local-
moment magnetic metal.” �LMM�.

In the disordered spin-liquid phase, the order-parameter
fluctuations are gapped. Consequently, they can be integrated
out in favor of a short-ranged spin-fluctuation-mediated
electron-electron interaction. In the absence of any special
nesting condition on the Fermi surface �which we assume�,
this does not significantly affect the low-energy properties of
the c electrons. Further, the volume of the Fermi surface is
determined by the density of c electrons alone without count-

ing the local moments. As argued in Ref. 11, the fractional-
ization and topological order of the local-moment system
survives the coupling to the metal. This metallic phase is a
fractionalized Fermi liquid �FL�� which has spinon and as-
sociated topological excitations coexisting with a small
Fermi surface of c electrons.

One important issue is the relative stability of the spin-
liquid phase compared to the Neel phase in the metallic en-
vironment. In other words, does the coupling to the conduc-
tion electrons enhance or decrease the parameter regime in
which the spin liquid exists? We argue now that at least at
weak coupling, the Neel state gains in stability relative to the
spin liquid. Physically this may be traced to the damping of
the spin fluctuations due to particle-hole pairs of the Fermi
liquid. In the paramagnetic phase, if we integrate out the
conduction electrons, the �imaginary time� action for the
Neel order parameter acquires the familiar Landau damping
term �q� ,�
�

�
2. To assess the effect of this damping on the
phase diagram, consider the following simple model for the
spinons b on a 2+1 dimensional space-time cubic lattice
with the action,

S = S0 + S1 = �
��x,��,�x�,����

− t�b†�x,��b�x�,��� + H.c.�

+ g �
x,�,��

K�� − ���b2�x,��b†2�x,��� �9�

subject to the constraint b†�x ,��b�x ,��=1. Here K���= 1
�2 is

the imaginary time Fourier transform 
�
. The constant g
�JK

2 /vFQ, where vF is the Fermi velocity. Note that the cou-
pling term breaks the rotational invariance in x-� space. As t
increases, at certain critical value the b field orders. Denoting
this critical value in the absence and presence of g by t0c and
tc, respectively, we find that tc= t0c−�g, where �=O�1� is a
positive constant. The details are given in the Appendix A.

B. Critical properties

We now turn to the critical properties of the transition in
the presence of a weak coupling to the conduction electrons.
The electrons will couple to the slowly varying component
of the order-parameter field. The lowest-order addition to the
Hamiltonian consistent with the symmetries of the lattice and
spin rotation is

�H1 = JK	
r
c†�r��+c�r� · S−�r� + H.c., �10�

where “g” is a coupling constant. Another potentially impor-
tant term involves coupling between energy densities of the
electron and local moments. To leading order, this takes the
form

�H2 = �	
r
�c†�r�c�r�� · �b†�r�b�r�� �11�

with � as another coupling constant. Let us now integrate out
the conduction electrons to obtain an effective action for the
spinon fields. As already described above, the main effect of
�H1 is to generate the usual Landau damping term in the

FIG. 2. Fermi Surface in the two phases FL� and LMM �local
moment metal�.
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action S1=�k,�g
�

��k ,��
2. From the point of view of
renormalization group �RG�, one crucial observation con-
cerning S1 is that the kernel K��� is long ranged in the time
domain �K���= 1

�2 � and thus couples �’s at two separate
points in space time. This implies that at the tree level, one
could directly use the scaling dimensions for individual �
operator’s even though 
��k ,��
2 is a composite operator.
Using the RG transformation appropriate for the critical
fixed point in the absence of the conduction electrons,
�→s� ,k→sk ,�→s�	̄−5�/2 with s�1 implies

S1 → s	̄−1	
k,�

g
�

��k,��
2. �12�

Thus the damping coefficient g flows as

dg

dl
= �1 − 	̄�g . �13�

Since 	̄
1, this term is clearly irrelevant for g in the
vicinity of the unperturbed fixed point. Next consider �H2.
Proceeding in the exactly similar manner, one integrates
out the electrons and obtains an effective term
g��k,�


�

k 
b�k ,��
2
b�−k ,−��
2, where g���2 /EF. A simple

scaling analysis21 similar to above yields

dg�

dl
= �− 3 + 2/��g�, �14�

where � is the critical exponent associated with scaling of
specific heat. Since �
2 /3 at O�2� critical point,22 �H2 also
turns out to be irrelevant.

Thus we have the remarkable result that a weak coupling
to the conduction electrons does not change the critical prop-
erties of the transition from that in the insulating magnet.
This is in striking contrast to the HMM theory where the
Landau damping is strongly relevant. Thus in the present
theory, the spin fluctuations are described by a nontrivial
interacting fixed point, and hence satisfy scaling �for in-
stance, in � /T�. In contrast, due to the Landau damping, the
HMM theory is at the upper critical dimension in d=2 �and
the fixed point is Gaussian�.

The boundaries of the quantum critical region are deter-
mined by the requirement that �s /T ,� /T ,�s /J��1. Here T
is the temperature, �s is the spin stiffness corresponding the
spinons b �which would be proportional to the spin-exchange
coefficient of the original spins S��, and � is the gap in the Z2
spin-liquid phase. Using the scaling relations �s ,��J
r
�,
where ��2 /3 and r= �1− tc / t� is a dimensionless measure of
the distance from criticality, one obtains r� �T /J�3/2�1 for
being not too far from criticality. Further, though the usual
Ginzburg criterion for observing deviations from mean-field
behavior applies, even the “mean-field exponents” for the
spinons b imply exponents for the physical spin operators
S+=b2. which are very different than those for O�2� univer-
sality class �e.g., 	̄mean field=1�.

IV. EFFECT OF COUPLING ON CONDUCTION
ELECTRONS

Though the coupling to AFM order parameter turns out to
be irrelevant for the phase-transition critical properties, it
may still affect the electronic properties significantly. First
consider the conduction electrons’ band structure in the mag-
netically ordered side. At the mean-field level, the effect of
coupling could be captured by the following Hamiltonian:

H = �kck
†ck + JKN0�ck+Q

† �xck + H.c.� . �15�

Here N0 is the AFM order parameter and we have as-
sumed that spins order along x̂ direction. The above Hamil-
tonian is easily diagonalized and one obtains two bands

E�=
�k+�k+Q

2 ���
�k−�k+Q

2 �2+JK
2 N0

2. For any nonzero N0, the unit
cell is doubled and thus one finds electron and hole pockets
emerging on the ordered side.23,24 As N0 increases, the hole
pockets grow in size at the expense of electron pockets, the
difference in areas being constant and determined by the
density of conduction electrons.23,24 For small N0, the sepa-
ration in momentum space between hole and electron pock-

ets grows in proportion to N0= �b2��
t− tc
�̄, where t is the

tuning parameter for transition and �̄�0.83.20 Thus the
separation grows much more slowly compared to a conven-
tional HMM scenario where the AFM order N0�
t− tc
� with
��0.35 corresponding to three-dimensional �3D� X-Y uni-
versality class.

Though potentially there are many other interesting ques-
tions to be answered on the magnetically ordered side �e.g.,
the limit N0→0 and k ,�→0 for various correlation func-
tions may not commute23�, our focus in the remaining paper
would be on the quantum critical regime. We begin by cal-
culating single-particle Green’s function for conduction elec-
trons in the quantum critical regime.

A. Single-particle Green’s function

Qualitatively, since critical fluctuations are centered
around the ordering wave vector Q, the scattering rate at the
Fermi points connected by Q will get enhanced and one
would expect that the electron-transport properties might
show signature of such hot spots. One simple and useful
calculation one might do is to calculate the one-particle
Green’s function G�k , i�n� for a conduction electron pertur-
batively in the coupling g.

The lowest-order term that contributes to the self-energy
��k , i�n�=G0

−1�k , i�n�−G−1�k , i�n� �see Fig. 3� is

FIG. 3. Lowest-order contribution to the electron’s self-energy.
The full line is the electron’s noninteracting Green’s function while
the dashed line denotes spin-spin correlator war ��k ,��.
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��k,i�n� = TJK
2 �

k�,i�m

�s�k�,i�m�G0�k − k�,i�n − i�m� ,

�16�

where �s�k ,��= �S+�k ,��S−�k ,���= ����k−Q ,����k
−Q ,��� is the dynamic susceptibility of local moments and
can be read off from Eq. �7� while G0�k , i�n�= 1

i�n−�k
is elec-

tron’s unperturbed Green’s function. Note that here i�n is a
fermionic while i�m is a bosonic Matsubara frequency.

It is useful to go to the spectral representation for ��k ,��,

��k,i�m� =	 Ab�k,��d�
� − i�m

,

where

Ab�k,�� = C
���2 − c2
k − Q
2�

��2 − c2
k − Q
2�1−	̄/2 , �17�

where C is a constant of O�1�. Substituting Eq. �17� and
expression for G0�k , i�n� in Eq. �16�, one obtains

��k,i�n� � JK
2	
�,q

�nb���� + 1 − nf��k+q+Q������2 − q2�
��i�n − �� − �k+q+Q����2 − c2q2�1−	̄/2�

,

�18�

where nb and nf are Bose and Fermi functions, respectively,
and �k�Ek−� is the single-particle energy. On physical
grounds, it is expected that Im ��k , i�n� would be significant
only for values of k such that both k and k+Q lie on the
Fermi surface. Such points on the Fermi surface are gener-
ally called hot spots. Let k0 be one such point. We find
�Appendix B� that at T=0,

Im ��k,i�n = �+� � JK
2 sign����	̄ �19�

for 
k−k0
�� /c while

Im ��k,i�n = �k
+ = 0� � JK

2 T	̄ �20�

at a nonzero temperature T for k�, the Fermi Surface and
satisfying 
k−k0
�T /c. For points k near the Fermi surface
away from the hot spots, the self-energy has the usual Lan-
dau Fermi-liquid form, namely, Im ��k , i�n=�+���2+T2.
Evidently, the hot spots acquire a width O�T� at nonzero
but small temperature T. Perhaps most importantly,
the electronic quasiparticle maintains its integrity at
the transition at all points on the Fermi surface since

 � Im ����

�� 
hot spot��	̄−1→0 as �→0.
Finally, the real part of self-energy at T=0 for points near

a hot spot behaves as Re ��k�k0 ,���JK
2 �−��	̄−1+�	̄�,

where ��vF /a is an ultraviolet frequency cutoff and a is
the lattice spacing �Appendix B�.

B. Thermodynamic and transport properties of electronic
quasiparticles

1. Specific heat

The correction to the internal energy of the electronic sys-
tem is given by

�U = �
k
��knf��k� , �21�

where ��k=Re ��k , i�n=�k
+� is the correction to the single-

particle energy levels. As argued above that the regions
which contribute primarily to ��k are located around hot
spots �denoted k0 here and above� and have a width propor-
tion to temperature T. Setting up a polar coordinate system
q−� near one such k0 and noticing that �k�vFq cos���, the
expression for �U may be written as

�U � 	
0

2�

d�	
0

T

qdq
JK

2 �	̄−1q cos��� − �q cos����	̄�
e�q cos��� + 1

�22�

which immediately yields �U�JK
2 ��	̄−1T3−T	̄+2� just from

scaling. Thus the correction to electronic specific heat �Cv is

�Cv =
�U

�T
�23�

�JK
2 ��	̄−1T2 − T	̄+1� �24�

which has the same temperature dependence as the contribu-
tion from the local moments ��T2� at low temperatures while
being subdominant to the contribution from the electronic
system in the absence of any coupling to spin fluctuations
��T� at low temperatures.

2. Spin susceptibility

The dominant contribution to the spin susceptibility
comes from the critical spin fluctuations �s. Here we calcu-
late the subleading contribution �e arising from the conduc-
tion electrons. The spin susceptibility for a noninteracting
Fermi system �eo�k ,�� at T=0 for ��k is given by
�eo�k ,���−N�EF��1+ iC��, where C is constant. To O�JK

2 �,
the correction to this result due to coupling to critical fluc-
tuations could be calculated by replacing the noninteracting
Green’s function by the full interacting one in the “polariza-
tion bubble” diagram for the free-electron susceptibility.
Thus

�e�k,i�n� = T �
q,i�r

G�k + q,i�n + i�r�G�q,i�r� . �25�

Expressing the Green’s function in terms of spectral func-
tion A�k ,�� and doing the summation over Matsubara fre-
quencies i�r,

�e�k,i�n� = 	
q
	
�1,�2

�nf��1� − nf��2�
i�n +�2 −�1

�A�k

+ q,�1�A�q,�2� . �26�

The spectral function A�k ,��=Im G�k ,�+� is expressed
simply in terms of inverse single-particle lifetime ��k ,�� as

A�k,�� =
��k,��

�2�k,�� + �� − �k��
2 , �27�

where �k�=�k+Re ��k ,�=�k
+���k to the leading order. The

imaginary part of ��k ,�� is thus obtained as

QUANTUM PHASE TRANSITION FROM AN… PHYSICAL REVIEW B 81, 205102 �2010�

205102-5



Im �e�k,�� = 	
q
	
�

�nf��� − nf�� − ���

 A�k + q,��A�q,� − �� . �28�

Since A�k ,�� is modified significantly due to critical fluc-
tuations only near hot points, the above integral would get
important contribution beyond the free electron result only if
k�Q. Further, the momentum integration over q would get
significant contribution only from a thin region around hot
spots of linear dimensions �. Using the fact that for �k��
and k belonging to hot spot, A�k ,���1 /�2−	̄, one readily
obtains Im �e�k�Q ,��� Im �eo�k�Q ,��+�2	̄−1. Since 	̄

1, this implies that to the leading order �e=�eo and thus
the leading correction to the total spin susceptibility is domi-
nated by the free-electron susceptibility.

3. dc conductivity

Under the relaxation-time approximation for the linear-
ized Boltzmann’s transport equation in the presence of an
electric field E, the conductivity for a Fermi liquid at low

temperatures is given by �=
ne2��k�FS

m , where n is the carrier
density and ��k�FS is the relaxation time �k averaged over the
Fermi surface. The relaxation time � is proportional to the
inverse scattering rate but in general, one needs to weight the
scattering rate by the factor �1−cos����, where � is the scat-
tering angle. Here we neglect this factor since the scattering
due to spin excitations have ���0=O�1�, where �0 is the
angle subtended by the hot spots k0 and k0+Q at the origin
of the Brillouin zone. Further the leading contributions of the
other two scattering processes, we consider below, namely,
electron-electron and impurity scattering is unchanged by the
introduction of this factor.

Near the hot points, the scattering rate 1 /� of electronic
quasiparticles due to critical spin fluctuations is proportional
to Im ��T	̄. Thus �M /��x+ �T /��	̄�x+ t	̄, where x mea-
sures the scattering rate due to �weak� disorder and is isotro-
pic while �M and � are characteristic scattering time and
energy scale, respectively. In the cold regions, one expects
typical Fermi-liquid behavior, thus �M /��x+ �T /��2=x+ t2.
From this and using the fact that the width of the hot spots is
proportional to t, one obtains the following expression for
the conductivity within the linearized relaxation-time ap-
proximation:

� �
t

x + t	̄
+

1 − t

x + t2 . �29�

Following Rosch,25 we consider the two limits, x� t2

�1 and t�x�1. We find that in both limits, the resistivity
�=1 /��x+ t2. Thus the Fermi-liquid result ��T2 remains
valid at low temperatures. This result is very different com-
pared to that for the resistivity near the z=2 quantum critical
point described within Hertz-Millis-Moriya theory where
one obtains ��x+T2 in the limit x� t2�1 while it is anoma-
lous and �x+T3/2 in the limit t�x�1.25

V. SUMMARY AND DISCUSSION

A crucial ingredient in the example presented in this paper
for the magnetic transition in the presence of metallic cou-

pling has been the fact that �1� for the parent insulating sys-
tem, the spinons are deconfined at the phase transition and
that �2� the critical exponent 	̄
1. We found that due to
these facts conduction electrons become dynamically decou-
pled from the underlying spin system at low energies and
therefore the phase transition remains in the exotic univer-
sality class XY� even in the presence of coupling to conduc-
tion electrons. Further we found that the metallic coupling
favors the ordered phase over paramagnetic spin liquid. We
also analyzed the effect of critical fluctuations on the con-
duction electrons and found that the Landau quasiparticle
survives at the phase transition. This enabled us to calculate
corrections to various thermodynamic and transport proper-
ties of the conduction electrons due to critical fluctuations.
Overall, we found that to the leading order the critical fluc-
tuations do not modify any thermodynamic or transport
property of the conduction electrons and all the results from
standard Fermi-liquid theory remain valid.

Contrasting our example with the conventional HMM
�Ref. 1� theory, one immediately notices rather stark differ-
ences. The HMM theory describes the onset of spin-density
wave order from a paramagnet heavy Fermi liquid phase
with a large Fermi surface. Spinon excitations do not exist in
either phase. The Landau damping of the spin-density wave
fluctuations leads to a dynamic critical exponent z=2. The
HMM theory is then right at the upper critical dimension in
d=2, and the physics is determined by marginal terms asso-
ciated with interactions between the order-parameter fluctua-
tions. Nontrivial scaling of the order-parameter fluctuations
is not expected within the HMM theory. On the other hand,
in our example, the paramagnetic metallic phase has a small
Fermi surface and gapped deconfined spinon excitations
though the magnetically ordered phase is a conventional
phase with no spinon excitations. Nevertheless, the critical
theory for the transition is most usefully formulated in terms
of the spinon degrees of freedom. The theory has z=1 and is
below its upper critical dimension. Hence the order-
parameter fluctuations naturally exhibit � /T scaling for vari-
ous critical properties.

What would be some of the experimental signatures of the
phase transition described in our paper? Because of the large
critical exponent 	̄�1.45, one would observe broad magnon
linewidths near the transition. We note that a proposal for a
similar phase transition was made in the context of the ma-
terial Cs2CuCl4 where one observes long tails in the spin-
wave spectrum that extend to very high frequencies.26,27 Fur-

thermore, since the exponent �̄�0.83 is also appreciably
bigger than that for the O�2� transition in 3D, one would see
order parameter falling off very slowly near the phase tran-
sition. As pointed out in the Sec. IV B, the electrical trans-
port in the quantum critical regime would show Fermi-liquid
behavior in contrast to the materials which obey Hertz-
Millis-Moriya theory. Finally, we note that the physics of the
phase transition is related to the presence of a Z2 spin liquid
�FL�� on the disordered side of the transition. Hence a direct
transition from a magnet to a paramagnet which has hints of
being a fractionalized Fermi liquid �FL�� could also be an
indication for the transition described in this paper. In this
regard, one may note that the FL� phase satisfies a Luttinger
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theorem which is different than that for the heavy Fermi
liquid.11

In summary, we provide an example of a magnetic phase
transition in a metallic system where the conventional HMM
theory fails and which at the same time shares some of the
properties with rather intriguing phases15 and phase
transitions3–5 in itinerant metallic systems.
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APPENDIX A

Here we analyze the phase diagram for action S is Eq. �9�
for g�1. Rewriting it as

S = �
��x,��,�x�,����

− t�b†�x,��b�x�,��� + H.c.� + g �
x,�,��

K�� − ���

 �b�x,�� · b†�x,�����b�x,�� · b†�x,���� .

The above form is amenable to a large-N generalization
which allows us to do a more controlled calculation. Thus we
consider N species of bosons b� with the following action
SN,

SN = �
��x,��,�x�,�����

− t�b�
†�x,��b��x�,��� + H.c.�

+
g

N
�

x,�,��,�,�

K�� − ����b��x,�� · b�
†�x,����2.

Thus the O�2� symmetry of the original action has been
replaced with O�2N� symmetry. At N=!, the above action
reduces to the simple form,

SN = �
k,�,k�,��,�

b�
†�k,��b��k,�����k,�� + gK��

+ ���G��k�,���� .

Here K���= 
�
 is the Fourier transform of K���,
��k ,��=−2t�cos�kx�+cos�ky�+cos����, and G��k ,��
= �b��k ,��†b��k ,���. Since we are approaching the phase
transition from the paramagnetic side, G��k ,���G�k ,�� is
independent of �.

First consider SN at g=0. Imposing the constraint b†b=1
using a Lagrange multiplier �, the action becomes,

S0 = �
k,�,�

b�
†�k,��b��k,�����k,�� + �� . �A1�

Imposing self-consistency for G�k ,�� yields

�
k,�

1

� − 2t�cos�kx� + cos�ky� + cos����
= 1. �A2�

At the phase transition, the gap to excitations closes and
hence �=6t. Thus the critical t= t0c at g=0 is given by

t0c = �
k,�

1

6 − 2�cos�kx� + cos�ky� + cos����
. �A3�

Next consider the self-consistency condition at the phase
transition for a nonzero but small g. One finds

�
k,�

1

6tc − 2tc�cos�kx� + cos�ky� + cos���� + gF���
= 1,

�A4�

where F���=�k�,���K��+���−K�����G�k� ,���� Using the
expression for G at g=0, one readily finds that F���

0∀�. Thus to O�g�, one reaches the conclusion that tc
= t0c−�g, where � is a positive constant. Thus the phase
boundary curves as shown in Fig. 1.

APPENDIX B

Using Eq. �18�, the imaginary part of the self-energy is

Im ��k,i�n = �+�

� JK
2	
��,q

�nb���� + 1 − nf��k+q+Q������2 − c2q2�
���2 − c2q2�1−	̄/2

 �� − �� − �k+Q+q� . �B1�

First consider Im ��k0 , i�n=�+� at T=0, where k0 is a hot
spot, i.e., both k0 and k0+Q lie on the Fermi surface. Let us
resolve q in components q�, q� parallel and perpendicular to
the Fermi surface, respectively. Since the important contri-
bution at small � comes from q located near the Fermi sur-
face, ��k0+Q+q��vFq�. Substituting this and the expres-
sions for nb and nf in T→0 limit into the Eq. �B1� one finds,

Im ��k0,i�n = �+� � JK
2 sign���	 dq�dq�

 
��� − vFq����vFq������ − vFq��2 − c2q2�

��� − vFq��2 − c2q2�1−	̄/2 . �B2�

The integration over q� could be done easily by just res-
caling the variables yielding

Im ��k0,i�n = �+� � JK
2 sign���	

0

�/vF+c

dq���� − vFq��2

− c2q�
2 ��	̄−1�/2 � JK

2 sign����	̄.

Similarly consider Im ��k , i�n=�+� when k is located
away from hot spots which implies �k+Q�0. Following the
same procedure as above, one finds that the Heaviside func-
tion imposes the condition that for Im � to be nonzero,
�"�k+Q. For k’s that do satisfy this condition, Im � could
be approximated by the same expression as above and is thus
��̄	 for small �.

Next we consider Im ��k0 , i�n=�k0

+ =0� at finite but small
temperatures,
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Im ��k0,i�n = 0+� � JK
2	

q

 
�nb�− �k0+q+Q� + 1 − nf��k0+q+Q�����k0+q+Q

2 − c2q2�

��k0+q+Q
2 − c2q2�1−	̄/2 .

The naive approximation ��k0+Q+q��vFq� yields zero
for the above integral because such an approximation leads
to a spurious symmetry q�↔−q�. It is easy to verify that
using the full expression for ��k0+Q+q�=q2 /2m+vFq�, the
integrand is nonzero as it should be on physical grounds. The
scale dependence on T could be easily extracted by rescaling
the variables and one finds,

Im ��k0,i�n = 0+� � JK
2 T	̄. �B3�

At points that are located away from the hot spots, Fermi/
Bose functions in the above equation impose that
Im ��k0 , i�n=0+��0 if 
k−k0
"T /c.

Finally, the real part of self-energy for points in the vicin-
ity of hot spots at finite temperature could be calculated from
the corresponding imaginary part using the Kramers-Kronig
relation,

Re ��k � k0,�� =
1

�
P	

�


Im ��k0,��

� − �

, �B4�

where the symbol P denotes the principal value of the inte-
gral. Substituting Im ��k0 ,���JK

2 sign����	̄, one obtains
Re ��k�k0 ,���JK

2 �−��	̄−1+�	̄�, where � is an ultraviolet
frequency cutoff.
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